Evolution of the Computer Mouse
Prevention of Pain & Discomfort

Anatomy shows more than seen only from an Ergonomic Aspect

By Drs Ing Paul C. Helder

November 12, 2014
Reference Study Fit for Work

Musculoskeletal Disorders in the European Workforce*

- 40 million workers in Europe are affected
- Repetitive Strain Injury (RSI) costs, €2.1 billion per annum in The Netherlands alone

* An increase in incidence of RSI is noted
* Fit for Work Musculoskeletal Disorders in the European Workforce, September 2009

www.fitforworkeurope.eu
Fundamental and Field Research shows

Relaxation in neck, shoulders, arms, hands and fingers

can be realized
Possible Sources of Irritation of Muscles

- not supporting forearm hand and fingers
- moving from the wrist (sideways)
- over extension of the wrist (hovering with the hand)
- excessive pronation and supination (hand shake position)
- gripping and pinching
A Step by Step Journey via the Anatomical Roadmap

1. Trapezius and Deltoid Muscles activity
2. Little Finger (Ulnar) sided Wrist pain
3. Hand Palm support
4. Position of Forearm and Wrist
5. Ulnar sided Dermatological (skin) effects
6. Proprioceptive Reflexes (neural excitation)
7. Summary and Conclusion
1. Trapezius and Deltoid Muscles activity

Hand activities
- influence the descending part of the Trapezius muscle
- but only partially influence the Deltoid muscle
- Deltoid muscle shows fatigue when holding the upper limb in position

Even activities of fingers only can influence muscles of arm and shoulder.
Trapezius and Deltoid Muscles activity

Points of attention

- Trapezius muscle supports the upper extremity posture
- Deltoid muscle is one of the main shoulder joint drivers
- Higher precision of tasks results in higher muscle tension
- Emotional stress as well as difficulty and complexity of tasks

Studies show precision influences tension of:

- Trapezius muscle
- But not of Deltoid muscle
Trapezius and Deltoid Muscles activity

Prevent unnecessary muscle loads
- support forearm, hand and fingers
- use desktop and or armrest
- height adjustable desks facilitate arm support

Result; minimal exertion of Trapezius muscles (lower EMG* values)

Note, wrist supports do not reduce muscle activation.

* EMG values show the level of muscle activity
Trapezius and Deltoid Muscles activity

Desktop contact of Ulna (little finger side) is prevented

- slight supination ($\sim 25^\circ$ ulnar side) hand palm facing downwards
- fine muscle tonus results in firmer forearm muscles (coapting)
- coapting due to positioning activity while handling an object

Ref. Leonardo da Vinci (1452-1519), study of Arms, Louvre, Paris, France
Trapezius and Deltoid Muscles activity

Relaxed and supported forearm hand and fingers

Do not reach
2. Little Finger (Ulnar) sided Wrist pain

Muscle action
- Extensor Carpi Ulnaris muscle
- Flexor Carpi Ulnaris muscle
- these muscles acting together can cause “wrist snap”

Note, reaching can also cause wrist pain

Wrist snap

Reaching
Ulnar sided Wrist pain

A random case history of moving the wrist sideward

- Extensor Digitorum muscle (A)
- Extensor Carpi Ulnaris muscle (B)
- Extensor Carpi Radialis muscles (ECR longus and brevis)

Extensor Carpi Ulnaris
Ulnar sided Wrist pain

Muscle action
- muscles acting together can cause “wrist snap”
- affecting wrist flexor muscles at the elbow
- frequent contractions lead to “pumping up”

Repetitive hand motions, moving the wrist sideways, may lead to some detrimental effects due to “compression neuropathy”.
Ulnar sided Wrist pain

Possible solutions

- change forearm position to reduce contact pressure
- increase portion of forearm resting on desktop or armrest
- pivot forearm around Flexor muscle belly
- prevent wrist snap
3. Hand Palm Support

Hand Palm Fascia

- a supporting triangle of great strength and density
- central portion occupies the middle of the hand palm
- fatty tissue surrounds this triangle
Hand Palm Support

Fundamental and field research results show

A hand supporting spherical (ball shape) body realizes minimal EMG values and thus lower MVC* values.

* Minimal Voluntary Contraction (MVC)
No Hand Palm Support

Resulting Grip Forces

Conventional mouse
- no hand palm support
- grip and pinch forces in fingers and thumb
- resulting reaction force and moments of force in joints
Grip Forces

What are we looking at

Reaction forces in the dominant functional (PIP*) joint

- reaction force F_r due to grip force
- moments $F_r \times L_1$ and $x L_2$

* Proximal Inter Phalangeal (PIP) Joint
Grip Forces

What are we looking at

Handshake position, vertical mouse
- grip and pinch forces in fingers and thumb
- critical moment and force in (CMC*) joint of thumb

* Carpometacarpal (CMC) Joint
4. Position of Forearm and Wrist

Behaviour of Ulna and Radius

Motion of Forearm and Wrist

Behaviour of Ulna and Radius

Handshake position
- increased flexion and extension of wrist
- forearm in an unnatural position, supination more than 25°
- Interosseous Membrane (IOM*) taut

* Interosseous Membrane (IOM)
Forces on Interosseous Membrane

Mouse use in handshake position

- thumb and finger muscles connect to IOM
- possible muscular damage (microlesions) due to longstanding repetitive movements of thumb and fingers
5. Ulnar sided Dermatological (skin) effects

Sources of complaints
- friction, pressure and sweating
- wrist pivots on desktop

Note, hard plastics used in PC mice (ABS), rarely cause contact allergy.
Ulnar sided Dermatological (skin) effects

Unavoidable skin contact
6. Proprioceptive Reflexes (neural excitation)

Receptors provide information (proprioception)
- perception of stimuli relating to e.g. posture and position
- connective tissue is stretched or loaded and thus signals tension
- ligaments may function as proprioceptors

Note adhesion of tendons and ligaments is ensured by Sharpey’s fibers.
Proprioceptive Reflexes (neural excitation)

Sharpey’s fibers
- are an integral part of the bone structure
- provide tissue anchorage
- traverse the Periosteum* (see grey circumference)
- integrate directly with the muscles, ligaments, and tendons

Act contrary to for example sellotape when peel forces are exerted.

* Periosteum, bone covering membrane
7. Summary

What happens when we move from A to B to C

- **Pronated position (A)**
 - grip and pinch forces, excessive loads in PIP joint
 - skin contact

- **Supinated position of more than 25° (B)**
 - pinch forces instigate excessive loads in e.g. CMC joint
 - proprioceptive reflexes indicate temporary relief
 - skin contact

- **forearm and palm position of around 25° and supported fingers (C)**
 - IOM relaxed, reduced stress and positive (proprioceptive) reflexes
 - no grip and pinch forces
 - no skin contact
7. Conclusion

Evidence Based Results

A lightly slanted palm and finger supporting computer mouse requires least muscle activity and results in reduced neural excitation.
Reactions and Questions

Paul C. Helder
References

1. Trapezius and Deltoid Muscles activity

Contact pressure in the wrist during computer mouse work
by J.W. Kang et al. (2012)

The effect on forearm and shoulder muscle activity in using different slanted computer mice
by prof. Han-Ming Chen et al. (2007)

Assessment of the Musculoskeletal Load of the Trapezius and Deltoid Muscles During Hand Activity
by Danuta Roman-Liu et al. (2001)

Shoulder muscle activity in young and older people during a computer mouse task
by Bjarne Laursen et al. (2000)

Computer mouse position as a determinant of posture, muscular load and perceived exertion.
by L.K. Karlqvist et al. (1998)

The effect of arm and wrist supports on the load of the upper extremity during VDU work.
by B. Visser et al. (1998)
2. Little Finger (Ulnar) sided Wrist pain

Contact pressure in the wrist during computer mouse work
by J.W. Kang et al. (2012)

The weight of computer mouse affects the wrist motion and forearm muscle activity during fast operation speed task
by prof. Han-Ming Chen et al. (2012)

Hand Positions in scrolling, as related to PC-workers' dystonia and treatment of dystonia by means of vibrostimulation
and external shock waves therapy
by prof. K.J. van Zwieten et al. (2009)
References

3. Hand Palm Support

A biomechanical study of spherical grip
by J. Martin-Martin et al. (2013)

Effects of the use of a special computer mouse: The HandShoe Mouse
by prof. K.J. van Zwieten et al. (2011)

Finger Proximal Inter Phalangeal (P.I.P.) Motion : Joint Surfaces and Ligamentous Geometries Are Interrelated
by prof. K.J. van Zwieten et al. (2011)

The effect on forearm and shoulder muscle activity in using different slanted computer mice
by prof. Han-Ming Chen et al. (2007)

Result of the use of a hand supporting computer mouse by patients with neck and shoulder complaints. (text in Dutch)
by P.C. Helder et al. (2006)
Abstract in English http://www.handshoemouse.com/research-2.html

Examination of the Hand and Wrist
Raoul Tubiana, Jean-Michel Thomine, Evelyn Mackin, 1998
ISBN 1-85317-544-7

Landsmeer Atlas of Anatomy of the hand, 1976
Fig. 7.34 Fig. 9.13 a,b

Movements of the thumb in relation to peripheral nerve injuries
V.C. Marshall et al. (1963)

Power Grip and Precision Handling
by prof. J.M.F. Landsmeer (1962)
4. Position of Forearm and Wrist

A biomechanical study of spherical grip
by J. Martin-Martin et al. (2013)

Effects of the use of a special computer mouse: The HandShoe Mouse
by prof. K.J. van Zwieten et al. (2011)

Interosseous membrane (IOM) extreme tautness in forearm neutral position, evident from in vitro anatomical observations, strongly suggests unwished effects on fingers and thumb long muscles, during repetitive tasks in vivo
by prof. K.J. van Zwieten et al. (2010)

The effect on forearm and shoulder muscle activity in using different slanted computer mice
by prof. Han-Ming Chen et al. (2007)

Result of the use of a hand supporting computer mouse by patients with neck and shoulder complaints. (text in Dutch)
by P.C. Helder et al. (2006)
Abstract in English http://www.handshoemouse.com/research-2.html

Diagram forearm deep extensors, Frick-Leonhardt-Starck, Human Anatomy 1, Thieme (1991)
References

5. Ulnar sided Dermatological (skin) effects

Mouse wrist
by A. Sierakowski et al. (2013)

Frictional lichenified dermatosis from prolonged use of a computer mouse: Case report and review of the literature of computer-related dermatoses
by Pedram Ghasri et al. (2010)

A new computer-associated occupational skin disorder: Mousing callus
by N. Goksugar et al. (2005)

Computer-related skin diseases
by M. Wintzen et al. (2003)

Mouse fingers, a new computer-related skin disorder
by M. Vermeer et al. (2001)

Computer Palms (CP) We describe a new occupation-related skin finding in 2 computer programmers and discuss its characteristics and causes
by A.T. Lewis et al. (2000)
6. Proprioceptive Reflexes (neural excitation)

Periosteal Sharpey’s fibers: a novel bone matrix regulatory system?
by J.E. Aaron (2012)

The Architecture of the Connective Tissue in the Musculoskeletal System—An Often Overlooked Functional Parameter as to Proprioception in the Locomotor Apparatus
by J. Van der Wal, (2009)

The Concept of a “Synovio-Enthesal Complex” and Its Implications for Understanding Joint Inflammation and Damage in Psoriatic Arthritis and Beyond
by Dennis McGonagle (2007)

Report on the Second International Enthesitis Workshop
by Dennis McGonagle (2003)

Distribution of Collagens and Glycosaminoglycans in the Joint Capsule of the Proximal Interphalangeal Joint of the Human Finger
by Anthony R. Lewis (1998)